Lab 1

Lab 1 introduces basic concepts of MATLAB. Below is the assignment, and what I'll expect you to turn in. Below that is a quick overview of the necessary MATLAB commands to complete this lab.

Assignment:

1) Sinusoidal Synthesis

- a) Synthesis 2 sinusoidal signals of differing frequency and amplitude. Use a 3×1 sub-plot to plot each individual signal and then the sum of the two. Make sure the resulting signal is in the range [-1, 1].
- b) Play the output of the combined signal, can you hear both frequencies?
- c) Make sure your plots have the proper ranges on the axes as well as axis labels and a plot title.

2) Wav File

- a) Read a .wav file any .wav file (preferably 5 10 seconds in length). Find one on the web at sites such as <u>freesound.org</u>. If you really have no creativity or imagination you can use this one.
 - b) Plot the waveform, labeling the x-axis with time in seconds.
- c) Try playing the sound using a faster or slower sample rate than it was recorded. How does the sound change?
 - d) Plot and play just the first two seconds of the file.

3) Combining a wav file with a sinusoid

- a) Generate a 440 Hz tone of the same length as the wav file you used for part 2.
 - b) Combine the tone with the wav file.
- c) Plot and play the output, making sure that the signal does not exceed [-1, 1]. (label the x-axis with time in seconds).
 - d) Write the output to a new wav file, named "YourName-Lab1.wav"

Submission Requirements

Export all plots as .png files and use Word (or similar) to compile them into one document along with a writeup for each section briefly explaining what you did, and what problems (if any) you encountered in the process. All plots and write up should be submitted as a single PDF file. Your code can either be in one .m file, or in separate files for each portion. Either way, make sure you name your files so that I know what they are! You do not need to submit your original .way file used in problem 2, but please submit the combined file that you generated in problem 3.

<u>Lab 1</u> Nate Paternoster 9/13/13

```
1) Code:
fs = 44100;
T = 1/fs;
t = 0:T:0.5;
f1 = 800;
f2 = 2000;
w1 = 2*pi*f1;
w2 = 2*pi*f2;
a1 = 0.5;
a2 = 0.25;
y1 = a1*sin(w1*t);
y2 = a2*sin(w2*t);
y3 = y1+y2;
sound(y1);
sound(y2);
soundsc(y3);
tplot = 0:T:0.01;
y1 = a1*sin(w1*tplot);
y2 = a2*sin(w2*tplot);
y3 = y1+y2;
subplot(3,1,1);
plot(tplot,y1);
title('800Hz Sine Tone');
xlabel('Time (s)');
ylabel('Amplitude');
```

```
subplot(3,1,2);
plot(tplot,y2);
title('2000Hz Sine Tone');
xlabel('Time (s)');
ylabel('Amplitude');

subplot(3,1,3);
plot(tplot,y3);
title('Sum of 800Hz and 2000Hz');
xlabel('Time (s)');
ylabel('Amplitude');
```

→ Two sine waves, y1 and y2, were created that have respective amplitudes a1 and a2 and frequencies w1 and w2. Their sum is represented by wave y3. I play all three of them consecutively to compare.

2) Code:

```
[z sf nbits] = wavread('16122__incarnadine__sinister-preacher-
reading-revelations.wav');
Tz = 1/sf;
tplotz = 0:(length(z)-1);
tplotz = tplotz*Tz;
subplot(2,1,1);
plot(tplotz,z);
title('Wav File');
xlabel('Time (s)');
ylabel('Amplitude');
sound(z,sf);
sound(z,55555);
sound(z,25000);
  % With a higher sample rate the pitch of the waveform rises,
and with a
  % lower sampling rate the pitch of the waveform drops
z 2sec = z(1:(2*sf));
tplotz 2sec = 0:(length(z 2sec)-1);
tplotz 2sec = tplotz 2sec*Tz;
subplot(2,1,2);
plot(tplotz 2sec,z 2sec);
title('First 2sec');
xlabel('Time (s)');
ylabel('Amplitude');
sound(z 2sec,sf);
```

→A wav file was read in and played at various sample rates. The waveform for that file was plotted.

3) Code:

```
w440 = 2*pi*440;
Y_440 = 0.3*sin(w440*tplotz);
Y_440 = Y_440'; %I needed these two steps to get the
Y_440(1,2) = 0; %matrix dimensions to match when
combining
sound(Y_440,sf);
y4 = Y_440 + z; %combining here
plot(tplotz,y4);
xlabel('Time (s)');
ylabel('Amplitude');
soundsc(y4,sf);
wavwrite(y4,sf,nbits,'NatePaternoster-Lab1.wav');
```

→ A 440Hz sine wave was created and summed with the wav file read in previously. The resulting waveform was played and plotted. I ran into some difficulties summing the two waveforms together because the dimensions of each waveform's matrix did not match initially.

