
11/17/13	 	 MMI502	

Lab 7

Convolution and the FFT

In this lab we will be playing around with the FFT as well as using two different
methods of convolution. We will also use the tic and toc commands in Matlab
to keep track of how long our code takes to execute.

The FFT

As you may know, the Discrete Fourier Transform, or DFT is a way of finding the
frequency spectrum of a signal. It has an enormous range of uses from
performing signal analysis to being an integral part of perceptual codecs such
as MP3 and AAC. The Fast Fourier Transform, or FFT is simply a more efficient
way of calculating the DFT, the results are identical. While there are many FFT
algorithms in existence, and it is outside the scope of this class to explain how
they work, the basic idea is that they take advantage of mathematical symmetry
to reduce the number of calculations required. A few things to know about the
DFT/FFT:

1. The number of samples given as the input is the number of frequency bins

obtained at the output.
2. The frequency bins are equally spaced around the unit circle (including both

positive and negative frequencies.
3. The first bin is always 0 Hz, or the DC component.
4. The spacing (in Hz) between frequency bins is: (sampling frequency) / (length

of input in samples)
5. The results should be interpreted with care, as the FFT always operates on a

linear frequency scale, yet our ears operate on a logarithmic frequency
scale.

6. There is an inherent trade off between frequency resolution and time
resolution. Long FFT's give good frequency resolution but poor time
resolution. Short FFT's are vice versa.

7. FFT's are much faster when the input is a power of 2 in length (i.e. 1024,
2048, 4096, etc). The nextpow2() function can be very helpful in finding
the best size for your signal.

Convolution

Convolution, as we will use it in this class is a way of applying a linear system to
a signal. A linear system in this case could be an equalizer, a speaker, a room,
or dozens of other things. The important property of a linear system is that it
can be completely characterized by its impulse response. We encountered the
idea of the impulse response in the previous lab when we used an impulse to
excite the Karplus-Strong model. In the world of digital audio, an impulse is
simply one sample at maximum amplitude (+1.0) followed by all zeros. The
output of the system in response to an impulse is called, unsurprisingly, it's
impulse response. It's a very convenient tool to use, because it tells us

11/17/13	 	 MMI502	

everything we need to know* about the system. Thus, if we want to hear how a
recording would sound if it had been recorded in a particular room, all we need
to do is convolve this signal with the impulse response of the room. In this lab
we will be doing just that. A few things to know about convolution:

1. Your book will give you a more detailed description of how convolution works.

It is important to keep in mind that convolution requires a large number
of computations, and grows exponentially with the lengths of the inputs.

2. Convolution operates on two signals, which we will think of as the input and
the impulse response we are applying to that input. In actuality though,
the order of inputs doesn't matter. A convolved with B is the same as B
convolved with A.

3. The convolution of two signals is always longer than either of its inputs. An
input of length L convolved with an impulse response of length M will
have an output of length L+M-1.

* yes there are some caveats to this statement, but for our purposes it is
true

The Convolution Theorem

Simply stated, the Convolution Theorem tells us that multiplication in the
frequency domain is the same as convolution in the time domain. Consider two
things we know:
1. Convolution is a very computationally intensive task.
2. The FFT gives us a tremendous saving in computation when converting

between the time domain and frequency domain.
Hopefully you see where I'm going. If we have large sets of data to convolve
(such as audio signals), we can do it much faster by taking the FFT of both
signals, multiplying them together, and then taking the IFFT of the result. Done
correctly, this will give us the same result as good old-fashioned convolution
but in much less time.

Timing Scripts in Matlab
When we start to do more complicated things on longer bits of audio, the time
needed to do the processing can become non-trivial. Two of the very helpful
commands in Matlab are tic and toc, which make it easy to see how long it
took to run a series of commands. It's quite simple: when you want to start
timing something, you give the tic command. When you want to stop the timer,
you give the toc command. Matlab will then print the elapsed time to the
command window.

 tic;
 % ...do a bunch of stuff
 toc;

 Display:
 Elapsed time is 3.153909 seconds.

11/17/13	 	 MMI502	

Assignment:

Problem 1:
One of the most important skills as a programmer is learning to read and
understand existing code. Look again at the magPlot function. Copy it into your
write-up and explain what each line does. Be as descriptive as you can, and do
your best to explain "why" instead of just "what." (Note: you do not need to
explain the "set" commands)

Problem 2:
Read in a few seconds of audio from your favorite song (mono signal only) and
use magPlot to identify what the most prominent frequencies are. How do these
relate to the key or chords of the song? Include the plot in your write up, along
with the wav file of the audio.

Problem 3:
 a) Write a convolution function based on equation 7.6 on page 186 in the
Steiglitz book. Use small sets of numbers and test it against the built in function
conv.
 Hint: Think of making delayed and scaled versions of the
"impulse response" input which are superimposed to create the output.
 b) Write a convolution function utilizing FFT's and the Convolution
Theorem. Test it against the conv function. Remember that each input will
need to be zero padded to be at least as long as the expected output.
 c) Use this impulse response and convolve it with this snare hit using the
functions you wrote in parts A and B respectively. Use the tic and toc
commands to time how long each one takes. Include these times in your write
up, as well as one of the output wav files (the output should be identical from
the two functions).
Note that for the non-FFT case this could take a minute or more for your
machine to process, so be patient.
 d) Given your results from part C, what is the advantage of using the FFT
to perform convolution? Are there any disadvantages?

Useful commands:

 fft() Compute the FFT (DFT) of an input. Note that you can give it a
second argument with the length of FFT you want to use. It will then do any
zero-padding or truncation necessary. Very convenient!
 ifft() Inverse FFT.
 nextpow2() Find the nearest 2^X which is greater than or equal to the
input, check the documentation for the correct usage.
 tic; Start timer.
 toc; Stop timer and report time elapsed.

conv() Convolve two signals.	

11/17/13	 	 MMI502	

Lab	 7	 –	 Convolution	 and	 the	 FFT	
Nate	 Paternoster	

	
Part	 1	 –	 Analyzing	 the	 magPlot	 function	

	
function magPlot(input, fs, plotTitle)
% function magPlot(input, fs, plotTitle)
% magPlot takes in an input vector (one channel only!)
% and plots the magnitude spectrum in dB
%
% input: input signal
% fs: sampling frequency of input signal
% plotTitle: string to use as the title of the plot
%
% Example: magPlot(mySignal, 44100, 'Frequency Spectrum');

fftLen = 2^nextpow2(length(input));

The Fast Fourier Transform works most efficiently with 2N amount
of data. It works similarly to mergesort, which is most efficient
when it can divide all the data exactly evenly. Having the
Fourier series length be the next highest power of 2 after the
input matrix length will allow all of the input data to be
represented while being most efficient to process.

halfLen = fftLen/2;
bin1Freq = fs/fftLen;

Bins are the equivalent of samples of the input waveform. Each
bin represents a frequency component of the waveform. The very
first bin will be the input waveform’s sample rate (for example
48k) divided by the total length of the Fourier series
representing the input data (for example 24k). In this example
the first bin would be 2Hz and would allow us to see the amount
of 2Hz sinusoid present in the waveform.

freqVec = 0:bin1Freq:(halfLen-1)*bin1Freq;
We can create the entire vector of bins to be shown on the
frequency domain graph. We are only concerned about representing
the first half of the frequency domain because the second half is
past the Nyquist frequency and won’t be able to be represented or
heard in the waveform. The first bin’s frequency will be the
space between each bin; therefore, this FFT will use evenly
spaced bins.

inputFFT = fft(input, fftLen);
This will perform the transform on the input waveform vector data
up to the Fourier series length calculated earlier.

inputFFT = abs(inputFFT(1:halfLen));
 This will take the magnitude of each bin.
inputFFT = inputFFT/halfLen;

This will remove the second half of the frequency domain vector.
All the bins past the Nyquist frequency will be removed.

inputMagDB = 20.*log10(inputFFT);
 The magnitudes of each bin will be converted to dB values.
inputMagDB(inputMagDB < -100) = -100;

Any bins that have a magnitude greater than -100 will be set to -
100. This is to keep the graph readable since there may be some
bins that have –infinity magnitude.

figure;
plot(freqVec, inputMagDB);

11/17/13	 	 MMI502	

axis([20 fs/2 -60 0]);
grid on;
xlabel('Frequency (Hz)');
ylabel('Amplitude (dBFS)');
title(plotTitle);
set(gca, 'XScale', 'log');

set(gca, 'XTick', [20, 50, 100, 200, 500, 1e3, 2e3, 5e3, 10e3, 20e3]);
	
	

Part	 2	 –	 Identifying	 the	 frequency	 content	 of	 a	 wav	 file	
	

Figure	 1:	 The	 frequency	 spectrum	 of	 the	 wav	 file	 read	 in.	
	
	
The	 wav	 file	 was	 read	 in	 using	 wavread	 and	 plotted	 using	 magPlot.	 The	

corresponding	 bins	 are	 shown	 on	 the	 x-‐axis	 and	 the	 amplitude	 in	 dB	 is	 shown	 on	 the	 y-‐axis.	
The	 most	 prominent	 frequencies	 appear	 to	 be	 440Hz,	 660Hz,	 220Hz,	 740Hz,	 and	 830Hz.	
These	 correspond	 to	 the	 pitches	 A4,	 E5,	 A3,	 F#5,	 and	 G#5.	 The	 beginning	 of	 this	 song	 is	 an	
Amaj7	 chord.	

	
	
	
	

11/17/13	 	 MMI502	

	
Part	 3	 –	 Writing	 convolution	 functions	
	
a. Write	 a	 convolution	 function	 based	 on	 equation	 7.6	 on	 page	 186	 in	 the	 Steiglitz	 book.	 Use	

small	 sets	 of	 numbers	 and	 test	 it	 against	 the	 built	 in	 function	 conv.	
	

The	 function	 here	 was	 based	 on	 the	 equation:	
	

𝑦! = 𝑥!ℎ!!!

!

!!!

	

	
To	 test	 this	 function	 I	 used	 [0,	 0,	 0,	 1]	 as	 the	 input	 vector	 and	 [1,	 1,	 1,	 1]	 as	 the	

impulse	 response	 vector.	 Using	 both	 my	 function	 and	 Matlab’s	 built-‐in	 conv	 function	
the	 resultant	 vector	 ended	 up	 being	 [0,	 0,	 0,	 1,	 1,	 1,	 1]	 in	 both	 cases.	
	

b. Write	 a	 convolution	 function	 utilizing	 FFT's	 and	 the	 Convolution	 Theorem.	 Test	 it	 against	
the	 conv	 function.	 Remember	 that	 each	 input	 will	 need	 to	 be	 zero	 padded	 to	 be	 at	
least	 as	 long	 as	 the	 expected	 output.	

	
The	 convolution	 theorem	 states	 that	 convolution	 in	 the	 time	 domain	 is	

equivalent	 to	 multiplication	 in	 the	 frequency	 domain.	 In	 order	 to	 make	 this	
convolution	 function	 work	 we	 will	 first	 pad	 the	 input	 and	 impulse	 vectors	 to	 be	
equal	 lengths.	 Then	 they	 will	 undergo	 the	 FFT.	 The	 vectors	 will	 then	 be	 multiplied	
together	 and	 finally	 the	 resultant	 vector	 will	 undergo	 the	 inverse	 FFT	 to	 be	 brought	
back	 into	 the	 time	 domain.	

After	 testing	 this	 function	 against	 Matlab’s	 conv	 using	 the	 same	 input	 and	
impulse	 response	 vectors	 as	 before,	 I	 arrived	 at	 roughly	 the	 same	 result	 as	 before.	
	

c. Use	 this	 impulse	 response	 and	 convolve	 it	 with	 this	 snare	 hit	 using	 the	 functions	 you	 wrote	
in	 parts	 A	 and	 B	 respectively.	 Use	 the	 tic	 and	 toc	 commands	 to	 time	 how	 long	 each	 one	
takes.	 Include	 these	 times	 in	 your	 write	 up,	 as	 well	 as	 one	 of	 the	 output	 wav	 files	 (the	
output	 should	 be	 identical	 from	 the	 two	 functions).	

	
The	 function	 from	 part	 (a)	 took	 306.1796	 seconds	 to	 convolve	 the	 snare	 hit	

with	 the	 impulse	 result.	 The	 function	 from	 part	 (b)	 took	 only	 0.0163	 seconds	 in	
contrast.	

	
d. 	 Given	 your	 results	 from	 part	 C,	 what	 is	 the	 advantage	 of	 using	 the	 FFT	 to	 perform	

convolution?	 	 Are	 there	 any	 disadvantages?	
	
Using	 the	 FFT	 provides	 a	 much	 quicker	 method	 to	 perform	 convolution.	 However	
using	 the	 FFT	 also	 produces	 quantization	 errors	 because	 the	 signal	 can	 only	 be	
analyzed	 at	 discrete,	 evenly	 spaced	 bins	 and	 cannot	 be	 analyzed	 continuously.	 In	
addition,	 the	 FFT	 must	 contain	 2N	 amount	 of	 data	 to	 be	 used	 efficiently.	
	

