
11/17/13	
 	
 MMI502	

Lab 7

Convolution and the FFT

In this lab we will be playing around with the FFT as well as using two different
methods of convolution. We will also use the tic and toc commands in Matlab
to keep track of how long our code takes to execute.

The FFT

As you may know, the Discrete Fourier Transform, or DFT is a way of finding the
frequency spectrum of a signal. It has an enormous range of uses from
performing signal analysis to being an integral part of perceptual codecs such
as MP3 and AAC. The Fast Fourier Transform, or FFT is simply a more efficient
way of calculating the DFT, the results are identical. While there are many FFT
algorithms in existence, and it is outside the scope of this class to explain how
they work, the basic idea is that they take advantage of mathematical symmetry
to reduce the number of calculations required. A few things to know about the
DFT/FFT:

1. The number of samples given as the input is the number of frequency bins

obtained at the output.
2. The frequency bins are equally spaced around the unit circle (including both

positive and negative frequencies.
3. The first bin is always 0 Hz, or the DC component.
4. The spacing (in Hz) between frequency bins is: (sampling frequency) / (length

of input in samples)
5. The results should be interpreted with care, as the FFT always operates on a

linear frequency scale, yet our ears operate on a logarithmic frequency
scale.

6. There is an inherent trade off between frequency resolution and time
resolution. Long FFT's give good frequency resolution but poor time
resolution. Short FFT's are vice versa.

7. FFT's are much faster when the input is a power of 2 in length (i.e. 1024,
2048, 4096, etc). The nextpow2() function can be very helpful in finding
the best size for your signal.

Convolution

Convolution, as we will use it in this class is a way of applying a linear system to
a signal. A linear system in this case could be an equalizer, a speaker, a room,
or dozens of other things. The important property of a linear system is that it
can be completely characterized by its impulse response. We encountered the
idea of the impulse response in the previous lab when we used an impulse to
excite the Karplus-Strong model. In the world of digital audio, an impulse is
simply one sample at maximum amplitude (+1.0) followed by all zeros. The
output of the system in response to an impulse is called, unsurprisingly, it's
impulse response. It's a very convenient tool to use, because it tells us

11/17/13	
 	
 MMI502	

everything we need to know* about the system. Thus, if we want to hear how a
recording would sound if it had been recorded in a particular room, all we need
to do is convolve this signal with the impulse response of the room. In this lab
we will be doing just that. A few things to know about convolution:

1. Your book will give you a more detailed description of how convolution works.

It is important to keep in mind that convolution requires a large number
of computations, and grows exponentially with the lengths of the inputs.

2. Convolution operates on two signals, which we will think of as the input and
the impulse response we are applying to that input. In actuality though,
the order of inputs doesn't matter. A convolved with B is the same as B
convolved with A.

3. The convolution of two signals is always longer than either of its inputs. An
input of length L convolved with an impulse response of length M will
have an output of length L+M-1.

* yes there are some caveats to this statement, but for our purposes it is
true

The Convolution Theorem

Simply stated, the Convolution Theorem tells us that multiplication in the
frequency domain is the same as convolution in the time domain. Consider two
things we know:
1. Convolution is a very computationally intensive task.
2. The FFT gives us a tremendous saving in computation when converting

between the time domain and frequency domain.
Hopefully you see where I'm going. If we have large sets of data to convolve
(such as audio signals), we can do it much faster by taking the FFT of both
signals, multiplying them together, and then taking the IFFT of the result. Done
correctly, this will give us the same result as good old-fashioned convolution
but in much less time.

Timing Scripts in Matlab
When we start to do more complicated things on longer bits of audio, the time
needed to do the processing can become non-trivial. Two of the very helpful
commands in Matlab are tic and toc, which make it easy to see how long it
took to run a series of commands. It's quite simple: when you want to start
timing something, you give the tic command. When you want to stop the timer,
you give the toc command. Matlab will then print the elapsed time to the
command window.

 tic;
 % ...do a bunch of stuff
 toc;

 Display:
 Elapsed time is 3.153909 seconds.

11/17/13	
 	
 MMI502	

Assignment:

Problem 1:
One of the most important skills as a programmer is learning to read and
understand existing code. Look again at the magPlot function. Copy it into your
write-up and explain what each line does. Be as descriptive as you can, and do
your best to explain "why" instead of just "what." (Note: you do not need to
explain the "set" commands)

Problem 2:
Read in a few seconds of audio from your favorite song (mono signal only) and
use magPlot to identify what the most prominent frequencies are. How do these
relate to the key or chords of the song? Include the plot in your write up, along
with the wav file of the audio.

Problem 3:
 a) Write a convolution function based on equation 7.6 on page 186 in the
Steiglitz book. Use small sets of numbers and test it against the built in function
conv.
 Hint: Think of making delayed and scaled versions of the
"impulse response" input which are superimposed to create the output.
 b) Write a convolution function utilizing FFT's and the Convolution
Theorem. Test it against the conv function. Remember that each input will
need to be zero padded to be at least as long as the expected output.
 c) Use this impulse response and convolve it with this snare hit using the
functions you wrote in parts A and B respectively. Use the tic and toc
commands to time how long each one takes. Include these times in your write
up, as well as one of the output wav files (the output should be identical from
the two functions).
Note that for the non-FFT case this could take a minute or more for your
machine to process, so be patient.
 d) Given your results from part C, what is the advantage of using the FFT
to perform convolution? Are there any disadvantages?

Useful commands:

 fft() Compute the FFT (DFT) of an input. Note that you can give it a
second argument with the length of FFT you want to use. It will then do any
zero-padding or truncation necessary. Very convenient!
 ifft() Inverse FFT.
 nextpow2() Find the nearest 2^X which is greater than or equal to the
input, check the documentation for the correct usage.
 tic; Start timer.
 toc; Stop timer and report time elapsed.

conv() Convolve two signals.	

11/17/13	
 	
 MMI502	

Lab	
 7	
 –	
 Convolution	
 and	
 the	
 FFT	

Nate	
 Paternoster	

	

Part	
 1	
 –	
 Analyzing	
 the	
 magPlot	
 function	

	

function magPlot(input, fs, plotTitle)
% function magPlot(input, fs, plotTitle)
% magPlot takes in an input vector (one channel only!)
% and plots the magnitude spectrum in dB
%
% input: input signal
% fs: sampling frequency of input signal
% plotTitle: string to use as the title of the plot
%
% Example: magPlot(mySignal, 44100, 'Frequency Spectrum');

fftLen = 2^nextpow2(length(input));

The Fast Fourier Transform works most efficiently with 2N amount
of data. It works similarly to mergesort, which is most efficient
when it can divide all the data exactly evenly. Having the
Fourier series length be the next highest power of 2 after the
input matrix length will allow all of the input data to be
represented while being most efficient to process.

halfLen = fftLen/2;
bin1Freq = fs/fftLen;

Bins are the equivalent of samples of the input waveform. Each
bin represents a frequency component of the waveform. The very
first bin will be the input waveform’s sample rate (for example
48k) divided by the total length of the Fourier series
representing the input data (for example 24k). In this example
the first bin would be 2Hz and would allow us to see the amount
of 2Hz sinusoid present in the waveform.

freqVec = 0:bin1Freq:(halfLen-1)*bin1Freq;
We can create the entire vector of bins to be shown on the
frequency domain graph. We are only concerned about representing
the first half of the frequency domain because the second half is
past the Nyquist frequency and won’t be able to be represented or
heard in the waveform. The first bin’s frequency will be the
space between each bin; therefore, this FFT will use evenly
spaced bins.

inputFFT = fft(input, fftLen);
This will perform the transform on the input waveform vector data
up to the Fourier series length calculated earlier.

inputFFT = abs(inputFFT(1:halfLen));
 This will take the magnitude of each bin.
inputFFT = inputFFT/halfLen;

This will remove the second half of the frequency domain vector.
All the bins past the Nyquist frequency will be removed.

inputMagDB = 20.*log10(inputFFT);
 The magnitudes of each bin will be converted to dB values.
inputMagDB(inputMagDB < -100) = -100;

Any bins that have a magnitude greater than -100 will be set to -
100. This is to keep the graph readable since there may be some
bins that have –infinity magnitude.

figure;
plot(freqVec, inputMagDB);

11/17/13	
 	
 MMI502	

axis([20 fs/2 -60 0]);
grid on;
xlabel('Frequency (Hz)');
ylabel('Amplitude (dBFS)');
title(plotTitle);
set(gca, 'XScale', 'log');

set(gca, 'XTick', [20, 50, 100, 200, 500, 1e3, 2e3, 5e3, 10e3, 20e3]);
	

	

Part	
 2	
 –	
 Identifying	
 the	
 frequency	
 content	
 of	
 a	
 wav	
 file	

	

Figure	
 1:	
 The	
 frequency	
 spectrum	
 of	
 the	
 wav	
 file	
 read	
 in.	

	

	

The	
 wav	
 file	
 was	
 read	
 in	
 using	
 wavread	
 and	
 plotted	
 using	
 magPlot.	
 The	

corresponding	
 bins	
 are	
 shown	
 on	
 the	
 x-­‐axis	
 and	
 the	
 amplitude	
 in	
 dB	
 is	
 shown	
 on	
 the	
 y-­‐axis.	

The	
 most	
 prominent	
 frequencies	
 appear	
 to	
 be	
 440Hz,	
 660Hz,	
 220Hz,	
 740Hz,	
 and	
 830Hz.	

These	
 correspond	
 to	
 the	
 pitches	
 A4,	
 E5,	
 A3,	
 F#5,	
 and	
 G#5.	
 The	
 beginning	
 of	
 this	
 song	
 is	
 an	

Amaj7	
 chord.	

	

	

	

	

11/17/13	
 	
 MMI502	

	

Part	
 3	
 –	
 Writing	
 convolution	
 functions	

	

a. Write	
 a	
 convolution	
 function	
 based	
 on	
 equation	
 7.6	
 on	
 page	
 186	
 in	
 the	
 Steiglitz	
 book.	
 Use	

small	
 sets	
 of	
 numbers	
 and	
 test	
 it	
 against	
 the	
 built	
 in	
 function	
 conv.	

	

The	
 function	
 here	
 was	
 based	
 on	
 the	
 equation:	

	

𝑦! = 𝑥!ℎ!!!

!

!!!

	

	

To	
 test	
 this	
 function	
 I	
 used	
 [0,	
 0,	
 0,	
 1]	
 as	
 the	
 input	
 vector	
 and	
 [1,	
 1,	
 1,	
 1]	
 as	
 the	

impulse	
 response	
 vector.	
 Using	
 both	
 my	
 function	
 and	
 Matlab’s	
 built-­‐in	
 conv	
 function	

the	
 resultant	
 vector	
 ended	
 up	
 being	
 [0,	
 0,	
 0,	
 1,	
 1,	
 1,	
 1]	
 in	
 both	
 cases.	

	

b. Write	
 a	
 convolution	
 function	
 utilizing	
 FFT's	
 and	
 the	
 Convolution	
 Theorem.	
 Test	
 it	
 against	

the	
 conv	
 function.	
 Remember	
 that	
 each	
 input	
 will	
 need	
 to	
 be	
 zero	
 padded	
 to	
 be	
 at	

least	
 as	
 long	
 as	
 the	
 expected	
 output.	

	

The	
 convolution	
 theorem	
 states	
 that	
 convolution	
 in	
 the	
 time	
 domain	
 is	

equivalent	
 to	
 multiplication	
 in	
 the	
 frequency	
 domain.	
 In	
 order	
 to	
 make	
 this	

convolution	
 function	
 work	
 we	
 will	
 first	
 pad	
 the	
 input	
 and	
 impulse	
 vectors	
 to	
 be	

equal	
 lengths.	
 Then	
 they	
 will	
 undergo	
 the	
 FFT.	
 The	
 vectors	
 will	
 then	
 be	
 multiplied	

together	
 and	
 finally	
 the	
 resultant	
 vector	
 will	
 undergo	
 the	
 inverse	
 FFT	
 to	
 be	
 brought	

back	
 into	
 the	
 time	
 domain.	

After	
 testing	
 this	
 function	
 against	
 Matlab’s	
 conv	
 using	
 the	
 same	
 input	
 and	

impulse	
 response	
 vectors	
 as	
 before,	
 I	
 arrived	
 at	
 roughly	
 the	
 same	
 result	
 as	
 before.	

	

c. Use	
 this	
 impulse	
 response	
 and	
 convolve	
 it	
 with	
 this	
 snare	
 hit	
 using	
 the	
 functions	
 you	
 wrote	

in	
 parts	
 A	
 and	
 B	
 respectively.	
 Use	
 the	
 tic	
 and	
 toc	
 commands	
 to	
 time	
 how	
 long	
 each	
 one	

takes.	
 Include	
 these	
 times	
 in	
 your	
 write	
 up,	
 as	
 well	
 as	
 one	
 of	
 the	
 output	
 wav	
 files	
 (the	

output	
 should	
 be	
 identical	
 from	
 the	
 two	
 functions).	

	

The	
 function	
 from	
 part	
 (a)	
 took	
 306.1796	
 seconds	
 to	
 convolve	
 the	
 snare	
 hit	

with	
 the	
 impulse	
 result.	
 The	
 function	
 from	
 part	
 (b)	
 took	
 only	
 0.0163	
 seconds	
 in	

contrast.	

	

d. 	
 Given	
 your	
 results	
 from	
 part	
 C,	
 what	
 is	
 the	
 advantage	
 of	
 using	
 the	
 FFT	
 to	
 perform	

convolution?	
 	
 Are	
 there	
 any	
 disadvantages?	

	

Using	
 the	
 FFT	
 provides	
 a	
 much	
 quicker	
 method	
 to	
 perform	
 convolution.	
 However	

using	
 the	
 FFT	
 also	
 produces	
 quantization	
 errors	
 because	
 the	
 signal	
 can	
 only	
 be	

analyzed	
 at	
 discrete,	
 evenly	
 spaced	
 bins	
 and	
 cannot	
 be	
 analyzed	
 continuously.	
 In	

addition,	
 the	
 FFT	
 must	
 contain	
 2N	
 amount	
 of	
 data	
 to	
 be	
 used	
 efficiently.	

	

