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Lab 7 
 

Convolution and the FFT 
  
In this lab we will be playing around with the FFT as well as using two different 
methods of convolution. We will also use the tic and toc commands in Matlab 
to keep track of how long our code takes to execute. 
  
The FFT 
  
As you may know, the Discrete Fourier Transform, or DFT is a way of finding the 
frequency spectrum of a signal. It has an enormous range of uses from 
performing signal analysis to being an integral part of perceptual codecs such 
as MP3 and AAC. The Fast Fourier Transform, or FFT is simply a more efficient 
way of calculating the DFT, the results are identical. While there are many FFT 
algorithms in existence, and it is outside the scope of this class to explain how 
they work, the basic idea is that they take advantage of mathematical symmetry 
to reduce the number of calculations required. A few things to know about the 
DFT/FFT: 
  
1. The number of samples given as the input is the number of frequency bins 

obtained at the output. 
2. The frequency bins are equally spaced around the unit circle (including both 

positive and negative frequencies. 
3. The first bin is always 0 Hz, or the DC component. 
4. The spacing (in Hz) between frequency bins is:  (sampling frequency) / (length 

of input in samples)  
5. The results should be interpreted with care, as the FFT always operates on a 

linear frequency scale, yet our ears operate on a logarithmic frequency 
scale. 

6. There is an inherent trade off between frequency resolution and time 
resolution. Long FFT's give good frequency resolution but poor time 
resolution. Short FFT's are vice versa.  

7. FFT's are much faster when the input is a power of 2 in length (i.e. 1024, 
2048, 4096, etc). The nextpow2() function can be very helpful in finding 
the best size for your signal.  

  
Convolution 
  
Convolution, as we will use it in this class is a way of applying a linear system to 
a signal. A linear system in this case could be an equalizer, a speaker, a room, 
or dozens of other things. The important property of a linear system is that it 
can be completely characterized by its impulse response. We encountered the 
idea of the impulse response in the previous lab when we used an impulse to 
excite the Karplus-Strong model. In the world of digital audio, an impulse is 
simply one sample at maximum amplitude (+1.0) followed by all zeros. The 
output of the system in response to an impulse is called, unsurprisingly, it's 
impulse response. It's a very convenient tool to use, because it tells us 
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everything we need to know* about the system. Thus, if we want to hear how a 
recording would sound if it had been recorded in a particular room, all we need 
to do is convolve this signal with the impulse response of the room. In this lab 
we will be doing just that. A few things to know about convolution: 
  
1. Your book will give you a more detailed description of how convolution works. 

It is important to keep in mind that convolution requires a large number 
of computations, and grows exponentially with the lengths of the inputs. 

2. Convolution operates on two signals, which we will think of as the input and 
the impulse response we are applying to that input. In actuality though, 
the order of inputs doesn't matter. A convolved with B is the same as B 
convolved with A. 

3. The convolution of two signals is always longer than either of its inputs. An 
input of length L convolved with an impulse response of length M will 
have an output of length L+M-1.  

  
* yes there are some caveats to this statement, but for our purposes it is 
true 
  
The Convolution Theorem 
  
Simply stated, the Convolution Theorem tells us that multiplication in the 
frequency domain is the same as convolution in the time domain. Consider two 
things we know: 
1. Convolution is a very computationally intensive task. 
2. The FFT gives us a tremendous saving in computation when converting 

between the time domain and frequency domain.    
Hopefully you see where I'm going. If we have large sets of data to convolve 
(such as audio signals), we can do it much faster by taking the FFT of both 
signals, multiplying them together, and then taking the IFFT of the result. Done 
correctly, this will give us the same result as good old-fashioned convolution 
but in much less time. 
  
  
Timing Scripts in Matlab 
When we start to do more complicated things on longer bits of audio, the time 
needed to do the processing can become non-trivial. Two of the very helpful 
commands in Matlab are tic and toc, which make it easy to see how long it 
took to run a series of commands. It's quite simple: when you want to start 
timing something, you give the tic command. When you want to stop the timer, 
you give the toc command. Matlab will then print the elapsed time to the 
command window. 
  
     tic; 
   % ...do a bunch of stuff 
   toc; 
  
     Display:  
     Elapsed time is 3.153909 seconds. 
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Assignment: 
  
Problem 1: 
One of the most important skills as a programmer is learning to read and 
understand existing code. Look again at the magPlot function. Copy it into your 
write-up and explain what each line does. Be as descriptive as you can, and do 
your best to explain "why" instead of just "what." (Note: you do not need to 
explain the "set" commands) 
  
Problem 2: 
Read in a few seconds of audio from your favorite song (mono signal only) and 
use magPlot to identify what the most prominent frequencies are. How do these 
relate to the key or chords of the song? Include the plot in your write up, along 
with the wav file of the audio. 
  
Problem 3: 
     a)     Write a convolution function based on equation 7.6 on page 186 in the 
Steiglitz book. Use small sets of numbers and test it against the built in function 
conv. 
               Hint:  Think of making delayed and scaled versions of the 
"impulse response" input which are superimposed to create the output. 
     b)     Write a convolution function utilizing FFT's and the Convolution 
Theorem. Test it against the conv function. Remember that each input will 
need to be zero padded to be at least as long as the expected output. 
     c)     Use this impulse response and convolve it with this snare hit using the 
functions you wrote in parts A and B respectively. Use the tic and toc 
commands to time how long each one takes. Include these times in your write 
up, as well as one of the output wav files (the output should be identical from 
the two functions). 
Note that for the non-FFT case this could take a minute or more for your 
machine to process, so be patient. 
     d)     Given your results from part C, what is the advantage of using the FFT 
to perform convolution?  Are there any disadvantages? 
  
Useful commands: 
  
    fft()      Compute the FFT (DFT) of an input. Note that you can give it a 
second argument with the length of FFT you want to use. It will then do any 
zero-padding or truncation necessary. Very convenient! 
    ifft()     Inverse FFT. 
    nextpow2() Find the nearest 2^X which is greater than or equal to the 
input, check the documentation for the correct usage. 
    tic;       Start timer. 
    toc;       Stop timer and report time elapsed. 

conv()     Convolve two signals.	
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Lab	
  7	
  –	
  Convolution	
  and	
  the	
  FFT	
  
Nate	
  Paternoster	
  

	
  
Part	
  1	
  –	
  Analyzing	
  the	
  magPlot	
  function	
  

	
  
function magPlot(input, fs, plotTitle) 
% function magPlot(input, fs, plotTitle) 
% magPlot takes in an input vector (one channel only!) 
% and plots the magnitude spectrum in dB 
% 
%    input:       input signal 
%    fs:          sampling frequency of input signal 
%    plotTitle:   string to use as the title of the plot 
% 
% Example:  magPlot(mySignal, 44100, 'Frequency Spectrum'); 
  
fftLen = 2^nextpow2(length(input)); 

The Fast Fourier Transform works most efficiently with 2N amount 
of data. It works similarly to mergesort, which is most efficient 
when it can divide all the data exactly evenly. Having the 
Fourier series length be the next highest power of 2 after the 
input matrix length will allow all of the input data to be 
represented while being most efficient to process. 

halfLen = fftLen/2; 
bin1Freq = fs/fftLen; 

Bins are the equivalent of samples of the input waveform. Each 
bin represents a frequency component of the waveform. The very 
first bin will be the input waveform’s sample rate (for example 
48k) divided by the total length of the Fourier series 
representing the input data (for example 24k). In this example 
the first bin would be 2Hz and would allow us to see the amount 
of 2Hz sinusoid present in the waveform. 

freqVec = 0:bin1Freq:(halfLen-1)*bin1Freq; 
We can create the entire vector of bins to be shown on the 
frequency domain graph. We are only concerned about representing 
the first half of the frequency domain because the second half is 
past the Nyquist frequency and won’t be able to be represented or 
heard in the waveform. The first bin’s frequency will be the 
space between each bin; therefore, this FFT will use evenly 
spaced bins. 

inputFFT = fft(input, fftLen); 
This will perform the transform on the input waveform vector data 
up to the Fourier series length calculated earlier. 

inputFFT = abs(inputFFT(1:halfLen)); 
 This will take the magnitude of each bin.  
inputFFT = inputFFT/halfLen; 

This will remove the second half of the frequency domain vector. 
All the bins past the Nyquist frequency will be removed. 

inputMagDB = 20.*log10(inputFFT); 
 The magnitudes of each bin will be converted to dB values. 
inputMagDB(inputMagDB < -100) = -100; 

Any bins that have a magnitude greater than -100 will be set to -
100. This is to keep the graph readable since there may be some 
bins that have –infinity magnitude. 

figure; 
plot(freqVec, inputMagDB); 
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axis([20 fs/2 -60 0]); 
grid on; 
xlabel('Frequency (Hz)'); 
ylabel('Amplitude (dBFS)'); 
title(plotTitle); 
set(gca, 'XScale', 'log'); 
  
set(gca, 'XTick', [20, 50, 100, 200, 500, 1e3, 2e3, 5e3, 10e3, 20e3]); 
	
  
	
  

Part	
  2	
  –	
  Identifying	
  the	
  frequency	
  content	
  of	
  a	
  wav	
  file	
  
	
  

Figure	
  1:	
  The	
  frequency	
  spectrum	
  of	
  the	
  wav	
  file	
  read	
  in.	
  
	
  
	
  
The	
  wav	
  file	
  was	
  read	
  in	
  using	
  wavread	
  and	
  plotted	
  using	
  magPlot.	
  The	
  

corresponding	
  bins	
  are	
  shown	
  on	
  the	
  x-­‐axis	
  and	
  the	
  amplitude	
  in	
  dB	
  is	
  shown	
  on	
  the	
  y-­‐axis.	
  
The	
  most	
  prominent	
  frequencies	
  appear	
  to	
  be	
  440Hz,	
  660Hz,	
  220Hz,	
  740Hz,	
  and	
  830Hz.	
  
These	
  correspond	
  to	
  the	
  pitches	
  A4,	
  E5,	
  A3,	
  F#5,	
  and	
  G#5.	
  The	
  beginning	
  of	
  this	
  song	
  is	
  an	
  
Amaj7	
  chord.	
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Part	
  3	
  –	
  Writing	
  convolution	
  functions	
  
	
  
a. Write	
  a	
  convolution	
  function	
  based	
  on	
  equation	
  7.6	
  on	
  page	
  186	
  in	
  the	
  Steiglitz	
  book.	
  Use	
  

small	
  sets	
  of	
  numbers	
  and	
  test	
  it	
  against	
  the	
  built	
  in	
  function	
  conv.	
  
	
  

The	
  function	
  here	
  was	
  based	
  on	
  the	
  equation:	
  
	
  

𝑦! = 𝑥!ℎ!!!

!

!!!

	
  

	
  
To	
  test	
  this	
  function	
  I	
  used	
  [0,	
  0,	
  0,	
  1]	
  as	
  the	
  input	
  vector	
  and	
  [1,	
  1,	
  1,	
  1]	
  as	
  the	
  

impulse	
  response	
  vector.	
  Using	
  both	
  my	
  function	
  and	
  Matlab’s	
  built-­‐in	
  conv	
  function	
  
the	
  resultant	
  vector	
  ended	
  up	
  being	
  [0,	
  0,	
  0,	
  1,	
  1,	
  1,	
  1]	
  in	
  both	
  cases.	
  
	
  

b. Write	
  a	
  convolution	
  function	
  utilizing	
  FFT's	
  and	
  the	
  Convolution	
  Theorem.	
  Test	
  it	
  against	
  
the	
  conv	
  function.	
  Remember	
  that	
  each	
  input	
  will	
  need	
  to	
  be	
  zero	
  padded	
  to	
  be	
  at	
  
least	
  as	
  long	
  as	
  the	
  expected	
  output.	
  

	
  
The	
  convolution	
  theorem	
  states	
  that	
  convolution	
  in	
  the	
  time	
  domain	
  is	
  

equivalent	
  to	
  multiplication	
  in	
  the	
  frequency	
  domain.	
  In	
  order	
  to	
  make	
  this	
  
convolution	
  function	
  work	
  we	
  will	
  first	
  pad	
  the	
  input	
  and	
  impulse	
  vectors	
  to	
  be	
  
equal	
  lengths.	
  Then	
  they	
  will	
  undergo	
  the	
  FFT.	
  The	
  vectors	
  will	
  then	
  be	
  multiplied	
  
together	
  and	
  finally	
  the	
  resultant	
  vector	
  will	
  undergo	
  the	
  inverse	
  FFT	
  to	
  be	
  brought	
  
back	
  into	
  the	
  time	
  domain.	
  

After	
  testing	
  this	
  function	
  against	
  Matlab’s	
  conv	
  using	
  the	
  same	
  input	
  and	
  
impulse	
  response	
  vectors	
  as	
  before,	
  I	
  arrived	
  at	
  roughly	
  the	
  same	
  result	
  as	
  before.	
  
	
  

c. Use	
  this	
  impulse	
  response	
  and	
  convolve	
  it	
  with	
  this	
  snare	
  hit	
  using	
  the	
  functions	
  you	
  wrote	
  
in	
  parts	
  A	
  and	
  B	
  respectively.	
  Use	
  the	
  tic	
  and	
  toc	
  commands	
  to	
  time	
  how	
  long	
  each	
  one	
  
takes.	
  Include	
  these	
  times	
  in	
  your	
  write	
  up,	
  as	
  well	
  as	
  one	
  of	
  the	
  output	
  wav	
  files	
  (the	
  
output	
  should	
  be	
  identical	
  from	
  the	
  two	
  functions).	
  

	
  
The	
  function	
  from	
  part	
  (a)	
  took	
  306.1796	
  seconds	
  to	
  convolve	
  the	
  snare	
  hit	
  

with	
  the	
  impulse	
  result.	
  The	
  function	
  from	
  part	
  (b)	
  took	
  only	
  0.0163	
  seconds	
  in	
  
contrast.	
  

	
  
d. 	
  Given	
  your	
  results	
  from	
  part	
  C,	
  what	
  is	
  the	
  advantage	
  of	
  using	
  the	
  FFT	
  to	
  perform	
  

convolution?	
  	
  Are	
  there	
  any	
  disadvantages?	
  
	
  
Using	
  the	
  FFT	
  provides	
  a	
  much	
  quicker	
  method	
  to	
  perform	
  convolution.	
  However	
  
using	
  the	
  FFT	
  also	
  produces	
  quantization	
  errors	
  because	
  the	
  signal	
  can	
  only	
  be	
  
analyzed	
  at	
  discrete,	
  evenly	
  spaced	
  bins	
  and	
  cannot	
  be	
  analyzed	
  continuously.	
  In	
  
addition,	
  the	
  FFT	
  must	
  contain	
  2N	
  amount	
  of	
  data	
  to	
  be	
  used	
  efficiently.	
  
	
  


