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Lab 7 
 

Convolution and the FFT 
  
In this lab we will be playing around with the FFT as well as using two different 
methods of convolution. We will also use the tic and toc commands in Matlab 
to keep track of how long our code takes to execute. 
  
The FFT 
  
As you may know, the Discrete Fourier Transform, or DFT is a way of finding the 
frequency spectrum of a signal. It has an enormous range of uses from 
performing signal analysis to being an integral part of perceptual codecs such 
as MP3 and AAC. The Fast Fourier Transform, or FFT is simply a more efficient 
way of calculating the DFT, the results are identical. While there are many FFT 
algorithms in existence, and it is outside the scope of this class to explain how 
they work, the basic idea is that they take advantage of mathematical symmetry 
to reduce the number of calculations required. A few things to know about the 
DFT/FFT: 
  
1. The number of samples given as the input is the number of frequency bins 

obtained at the output. 
2. The frequency bins are equally spaced around the unit circle (including both 

positive and negative frequencies. 
3. The first bin is always 0 Hz, or the DC component. 
4. The spacing (in Hz) between frequency bins is:  (sampling frequency) / (length 

of input in samples)  
5. The results should be interpreted with care, as the FFT always operates on a 

linear frequency scale, yet our ears operate on a logarithmic frequency 
scale. 

6. There is an inherent trade off between frequency resolution and time 
resolution. Long FFT's give good frequency resolution but poor time 
resolution. Short FFT's are vice versa.  

7. FFT's are much faster when the input is a power of 2 in length (i.e. 1024, 
2048, 4096, etc). The nextpow2() function can be very helpful in finding 
the best size for your signal.  

  
Convolution 
  
Convolution, as we will use it in this class is a way of applying a linear system to 
a signal. A linear system in this case could be an equalizer, a speaker, a room, 
or dozens of other things. The important property of a linear system is that it 
can be completely characterized by its impulse response. We encountered the 
idea of the impulse response in the previous lab when we used an impulse to 
excite the Karplus-Strong model. In the world of digital audio, an impulse is 
simply one sample at maximum amplitude (+1.0) followed by all zeros. The 
output of the system in response to an impulse is called, unsurprisingly, it's 
impulse response. It's a very convenient tool to use, because it tells us 
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everything we need to know* about the system. Thus, if we want to hear how a 
recording would sound if it had been recorded in a particular room, all we need 
to do is convolve this signal with the impulse response of the room. In this lab 
we will be doing just that. A few things to know about convolution: 
  
1. Your book will give you a more detailed description of how convolution works. 

It is important to keep in mind that convolution requires a large number 
of computations, and grows exponentially with the lengths of the inputs. 

2. Convolution operates on two signals, which we will think of as the input and 
the impulse response we are applying to that input. In actuality though, 
the order of inputs doesn't matter. A convolved with B is the same as B 
convolved with A. 

3. The convolution of two signals is always longer than either of its inputs. An 
input of length L convolved with an impulse response of length M will 
have an output of length L+M-1.  

  
* yes there are some caveats to this statement, but for our purposes it is 
true 
  
The Convolution Theorem 
  
Simply stated, the Convolution Theorem tells us that multiplication in the 
frequency domain is the same as convolution in the time domain. Consider two 
things we know: 
1. Convolution is a very computationally intensive task. 
2. The FFT gives us a tremendous saving in computation when converting 

between the time domain and frequency domain.    
Hopefully you see where I'm going. If we have large sets of data to convolve 
(such as audio signals), we can do it much faster by taking the FFT of both 
signals, multiplying them together, and then taking the IFFT of the result. Done 
correctly, this will give us the same result as good old-fashioned convolution 
but in much less time. 
  
  
Timing Scripts in Matlab 
When we start to do more complicated things on longer bits of audio, the time 
needed to do the processing can become non-trivial. Two of the very helpful 
commands in Matlab are tic and toc, which make it easy to see how long it 
took to run a series of commands. It's quite simple: when you want to start 
timing something, you give the tic command. When you want to stop the timer, 
you give the toc command. Matlab will then print the elapsed time to the 
command window. 
  
     tic; 
   % ...do a bunch of stuff 
   toc; 
  
     Display:  
     Elapsed time is 3.153909 seconds. 
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Assignment: 
  
Problem 1: 
One of the most important skills as a programmer is learning to read and 
understand existing code. Look again at the magPlot function. Copy it into your 
write-up and explain what each line does. Be as descriptive as you can, and do 
your best to explain "why" instead of just "what." (Note: you do not need to 
explain the "set" commands) 
  
Problem 2: 
Read in a few seconds of audio from your favorite song (mono signal only) and 
use magPlot to identify what the most prominent frequencies are. How do these 
relate to the key or chords of the song? Include the plot in your write up, along 
with the wav file of the audio. 
  
Problem 3: 
     a)     Write a convolution function based on equation 7.6 on page 186 in the 
Steiglitz book. Use small sets of numbers and test it against the built in function 
conv. 
               Hint:  Think of making delayed and scaled versions of the 
"impulse response" input which are superimposed to create the output. 
     b)     Write a convolution function utilizing FFT's and the Convolution 
Theorem. Test it against the conv function. Remember that each input will 
need to be zero padded to be at least as long as the expected output. 
     c)     Use this impulse response and convolve it with this snare hit using the 
functions you wrote in parts A and B respectively. Use the tic and toc 
commands to time how long each one takes. Include these times in your write 
up, as well as one of the output wav files (the output should be identical from 
the two functions). 
Note that for the non-FFT case this could take a minute or more for your 
machine to process, so be patient. 
     d)     Given your results from part C, what is the advantage of using the FFT 
to perform convolution?  Are there any disadvantages? 
  
Useful commands: 
  
    fft()      Compute the FFT (DFT) of an input. Note that you can give it a 
second argument with the length of FFT you want to use. It will then do any 
zero-padding or truncation necessary. Very convenient! 
    ifft()     Inverse FFT. 
    nextpow2() Find the nearest 2^X which is greater than or equal to the 
input, check the documentation for the correct usage. 
    tic;       Start timer. 
    toc;       Stop timer and report time elapsed. 

conv()     Convolve two signals.	  
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Lab	  7	  –	  Convolution	  and	  the	  FFT	  
Nate	  Paternoster	  

	  
Part	  1	  –	  Analyzing	  the	  magPlot	  function	  

	  
function magPlot(input, fs, plotTitle) 
% function magPlot(input, fs, plotTitle) 
% magPlot takes in an input vector (one channel only!) 
% and plots the magnitude spectrum in dB 
% 
%    input:       input signal 
%    fs:          sampling frequency of input signal 
%    plotTitle:   string to use as the title of the plot 
% 
% Example:  magPlot(mySignal, 44100, 'Frequency Spectrum'); 
  
fftLen = 2^nextpow2(length(input)); 

The Fast Fourier Transform works most efficiently with 2N amount 
of data. It works similarly to mergesort, which is most efficient 
when it can divide all the data exactly evenly. Having the 
Fourier series length be the next highest power of 2 after the 
input matrix length will allow all of the input data to be 
represented while being most efficient to process. 

halfLen = fftLen/2; 
bin1Freq = fs/fftLen; 

Bins are the equivalent of samples of the input waveform. Each 
bin represents a frequency component of the waveform. The very 
first bin will be the input waveform’s sample rate (for example 
48k) divided by the total length of the Fourier series 
representing the input data (for example 24k). In this example 
the first bin would be 2Hz and would allow us to see the amount 
of 2Hz sinusoid present in the waveform. 

freqVec = 0:bin1Freq:(halfLen-1)*bin1Freq; 
We can create the entire vector of bins to be shown on the 
frequency domain graph. We are only concerned about representing 
the first half of the frequency domain because the second half is 
past the Nyquist frequency and won’t be able to be represented or 
heard in the waveform. The first bin’s frequency will be the 
space between each bin; therefore, this FFT will use evenly 
spaced bins. 

inputFFT = fft(input, fftLen); 
This will perform the transform on the input waveform vector data 
up to the Fourier series length calculated earlier. 

inputFFT = abs(inputFFT(1:halfLen)); 
 This will take the magnitude of each bin.  
inputFFT = inputFFT/halfLen; 

This will remove the second half of the frequency domain vector. 
All the bins past the Nyquist frequency will be removed. 

inputMagDB = 20.*log10(inputFFT); 
 The magnitudes of each bin will be converted to dB values. 
inputMagDB(inputMagDB < -100) = -100; 

Any bins that have a magnitude greater than -100 will be set to -
100. This is to keep the graph readable since there may be some 
bins that have –infinity magnitude. 

figure; 
plot(freqVec, inputMagDB); 



11/17/13	   	   MMI502	  

axis([20 fs/2 -60 0]); 
grid on; 
xlabel('Frequency (Hz)'); 
ylabel('Amplitude (dBFS)'); 
title(plotTitle); 
set(gca, 'XScale', 'log'); 
  
set(gca, 'XTick', [20, 50, 100, 200, 500, 1e3, 2e3, 5e3, 10e3, 20e3]); 
	  
	  

Part	  2	  –	  Identifying	  the	  frequency	  content	  of	  a	  wav	  file	  
	  

Figure	  1:	  The	  frequency	  spectrum	  of	  the	  wav	  file	  read	  in.	  
	  
	  
The	  wav	  file	  was	  read	  in	  using	  wavread	  and	  plotted	  using	  magPlot.	  The	  

corresponding	  bins	  are	  shown	  on	  the	  x-‐axis	  and	  the	  amplitude	  in	  dB	  is	  shown	  on	  the	  y-‐axis.	  
The	  most	  prominent	  frequencies	  appear	  to	  be	  440Hz,	  660Hz,	  220Hz,	  740Hz,	  and	  830Hz.	  
These	  correspond	  to	  the	  pitches	  A4,	  E5,	  A3,	  F#5,	  and	  G#5.	  The	  beginning	  of	  this	  song	  is	  an	  
Amaj7	  chord.	  
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Part	  3	  –	  Writing	  convolution	  functions	  
	  
a. Write	  a	  convolution	  function	  based	  on	  equation	  7.6	  on	  page	  186	  in	  the	  Steiglitz	  book.	  Use	  

small	  sets	  of	  numbers	  and	  test	  it	  against	  the	  built	  in	  function	  conv.	  
	  

The	  function	  here	  was	  based	  on	  the	  equation:	  
	  

𝑦! = 𝑥!ℎ!!!

!

!!!

	  

	  
To	  test	  this	  function	  I	  used	  [0,	  0,	  0,	  1]	  as	  the	  input	  vector	  and	  [1,	  1,	  1,	  1]	  as	  the	  

impulse	  response	  vector.	  Using	  both	  my	  function	  and	  Matlab’s	  built-‐in	  conv	  function	  
the	  resultant	  vector	  ended	  up	  being	  [0,	  0,	  0,	  1,	  1,	  1,	  1]	  in	  both	  cases.	  
	  

b. Write	  a	  convolution	  function	  utilizing	  FFT's	  and	  the	  Convolution	  Theorem.	  Test	  it	  against	  
the	  conv	  function.	  Remember	  that	  each	  input	  will	  need	  to	  be	  zero	  padded	  to	  be	  at	  
least	  as	  long	  as	  the	  expected	  output.	  

	  
The	  convolution	  theorem	  states	  that	  convolution	  in	  the	  time	  domain	  is	  

equivalent	  to	  multiplication	  in	  the	  frequency	  domain.	  In	  order	  to	  make	  this	  
convolution	  function	  work	  we	  will	  first	  pad	  the	  input	  and	  impulse	  vectors	  to	  be	  
equal	  lengths.	  Then	  they	  will	  undergo	  the	  FFT.	  The	  vectors	  will	  then	  be	  multiplied	  
together	  and	  finally	  the	  resultant	  vector	  will	  undergo	  the	  inverse	  FFT	  to	  be	  brought	  
back	  into	  the	  time	  domain.	  

After	  testing	  this	  function	  against	  Matlab’s	  conv	  using	  the	  same	  input	  and	  
impulse	  response	  vectors	  as	  before,	  I	  arrived	  at	  roughly	  the	  same	  result	  as	  before.	  
	  

c. Use	  this	  impulse	  response	  and	  convolve	  it	  with	  this	  snare	  hit	  using	  the	  functions	  you	  wrote	  
in	  parts	  A	  and	  B	  respectively.	  Use	  the	  tic	  and	  toc	  commands	  to	  time	  how	  long	  each	  one	  
takes.	  Include	  these	  times	  in	  your	  write	  up,	  as	  well	  as	  one	  of	  the	  output	  wav	  files	  (the	  
output	  should	  be	  identical	  from	  the	  two	  functions).	  

	  
The	  function	  from	  part	  (a)	  took	  306.1796	  seconds	  to	  convolve	  the	  snare	  hit	  

with	  the	  impulse	  result.	  The	  function	  from	  part	  (b)	  took	  only	  0.0163	  seconds	  in	  
contrast.	  

	  
d. 	  Given	  your	  results	  from	  part	  C,	  what	  is	  the	  advantage	  of	  using	  the	  FFT	  to	  perform	  

convolution?	  	  Are	  there	  any	  disadvantages?	  
	  
Using	  the	  FFT	  provides	  a	  much	  quicker	  method	  to	  perform	  convolution.	  However	  
using	  the	  FFT	  also	  produces	  quantization	  errors	  because	  the	  signal	  can	  only	  be	  
analyzed	  at	  discrete,	  evenly	  spaced	  bins	  and	  cannot	  be	  analyzed	  continuously.	  In	  
addition,	  the	  FFT	  must	  contain	  2N	  amount	  of	  data	  to	  be	  used	  efficiently.	  
	  


