
	
 1	

Digital Design Lab
EEN 315 Section 3G

Lab 2
Design of a Four-Bit Multiplier

Group 5
Nathan Paternoster

(Partners: Michael Finale, Daniel Bennett)

Sayan Maity, TA

University of Miami
November 19th, 2013

Abstract
An ALU (Arithmetic Logic Unit) is a digital circuit that is capable of

performing integer arithmetic and logic operations. It is a widely used circuit,
found in every CPU and most microprocessors. ALU’s can be designed to be very
simple and provide only basic addition and subtraction functions or can be much
more complex and provide a wide variety of functions. The focus of this project is
to design one component of an ALU, a multiplier circuit. Our multiplier will be a
four-bit by four-bit multiplier. To design this circuit we will use the add-and-shift
algorithm. This algorithm will multiply two N-bit numbers and will have a
processing speed of O(N) = 2N. The circuit will be built using a full adder, a
digital circuit that is capable of adding two binary numbers.

We will simulate a 4-bit multiplier on Altera’s Quartus II program and also
program the circuit into Altera’s UP2 board.

	
 3	

Table of Contents

Overview	
 ...	
 4

Objectives	
 ...	
 6

Equipment	
 ...	
 6

Description	
 ..	
 6

Specifications	
 ..	
 8

Design	
 Synthesis	
 ..	
 8

Complete	
 Logic	
 Diagram	
 ...	
 9

Results	
 and	
 Simulations	
 ..	
 10

Answers	
 to	
 the	
 questions	
 in	
 the	
 lab	
 handout	
 ...	
 12

Conclusion	
 ...	
 12

Works	
 Cited	
 ...	
 12

	
 4	

Overview

 The circuit will be built using binary adders. The
truth table for a full adder is shown. In this 1-bit by 1-bit
adder, A and B are the inputs and S is the sum. 𝐶! and 𝐶!
are the carry-out and carry-in bits. These account for
overflow. This table demonstrates the fundamental method
of binary addition. The circuit for a full adder is also
shown. A half-adder will not consider a carry-in.

 Full adders can be cascaded to perform n-bit
addition. A 3-bit adder is shown. ALU’s use these
circuits to perform binary addition.

Subtraction can be performed in ALU’s in
nearly the same way when signed integers are
represented using 2’s complement. In common

subtraction: 4 (minuend) – 3 (subtrahend) = 1 (result). In binary, adding 4 (100) to
the 1’s complement of 3 (011 à 100) plus 1 (101) will produce 1001. The result
must be only three bits so the MSB will be removed and the correct result of 1
(001) is produced.

Figure 3: A 3-bit binary adder. The first bit requires only a half adder because a carry-in is not yet considered.

Binary multiplication in an ALU may be implemented with the add-and-shift
algorithm. In this algorithm we consider multiplication to be the summation of

	
 5	

partial sums. The inputs will be n-bits each and the multiplied result will be 2n-bits.
In common addition: 2 (multiplicand) x 3 (multiplier) = 6 (result). The algorithm
states that there will be two operations for each n bit. The first will be adding the
partial sum to the summation result thus far and the second will be shifting the
summation result to the right. When the n bit of the multiplier is 0 the number to be
added will be 0. When the n bit of the multiplier is 1 the number to be added is the
multiplicand. A 4-bit example of this algorithm is shown.

Figure 4: The add-and-shift algorithm.

 Step 1 considers the LSB of the multiplier. Since it is 1 the number to be
added is the multiplicand. The partial sum is then shifted to the right. Step 2
considers the 2nd digit of the multiplier. Since it is 0 the number to be added is 0.
The partial sum is then shifted to the right. There will be 4 total steps because the
numbers being multiplied are n = 4 bits. The total number of operations is then
O(4) = 2(4) = 8.

	
 6	

Objectives

To introduce the design of arithmetic circuits. To understand the advantages
of register storage. To introduce the concepts of control logic. To introduce
programmable logic.

Equipment
	

Description Chip Number Quantity

Quad 2-Input NAND Gates 7400 2	

Dual 4-line to 1-line Multiplexers 74153 1	

Synchronous 4-bit Counters 74163 1

4-bit Binary Full Adder 7483 1

4-bit Bi-directional Universal Shift Registers 74194 2

8-bit Bi-directional Shift Registers 74198 1

• Note: Since we are simulating this circuit, these components are for design

purposes only.

Description	

Once the shift-and-add algorithm is understood the circuit can be designed to
accomplish both the adding and shifting steps. An 8-bit shift register will be
connected back to a 4-bit full adder to keep the result summation in memory. The
inputs 𝐴!, 𝐴!, 𝐴!, and 𝐴! of the full adder will accept the four most significant bits
of the 8-bit shift register’s output as their input. These pins are 𝑄! , 𝑄!, 𝑄! , and 𝑄!.

	
 7	

The other inputs of the full adder, 𝐵!, 𝐵!, 𝐵!, and 𝐵! will accept the next four bits
of the input to be added. The carry-in pin of the adder will be grounded because
only whole integers will be added in our multiplier. The four output bits of the sum
of the adder along with the carry-out bit will be connected with the five most
significant input bits of the 8-bit shift register (D-H). The other three input bits of
the shift register will receive the next three most significant output bits of the shift
register (𝑄!, 𝑄! , and 𝑄!) in order to keep the 8-bit partial sum in memory.

The four external input bits (𝐴!, 𝐴!, 𝐴!, and 𝐴![MSB]) of the multiplicand
and the four input bits of the multiplier (𝐵!, 𝐵!, 𝐵!, and 𝐵![MSB]) will each be fed
into their own 4-bit shift register. These will act as memory storage devices where
each step of the add-and-shift algorithm is controlled by a single clock. The control
lines (𝑆! and 𝑆!) for each register will be connected to the same ‘pulse’ input. This
will be set to ‘1’ for the first clock pulse, which will allow the external parallel
inputs to be loaded. After this initial loading the rest of the operations will be done
within the circuit and the control lines will be ‘0’.

The four output bits of the multiplier’s shift register will be connected to a
4:1 MUX whose select lines are controlled by a 74163 synchronous counter. The
counter’s four inputs are all set to ‘1’ and the ENT and ENP enable pins are set to
‘1’. The CLRN pin’s default state is ‘1’ but it will receive a ‘0’ on the first pulse,
which is the inverse of the ‘pulse’ input. The 4:1 MUX will be responsible for
selecting each bit of the multiplier to multiply the multiplicand by. This will be
accomplished by setting the two select lines of the MUX to be the two least
significant bits of the counter’s output. The inverse of the third output pin of the
counter will be connected the LDN (load) input. When the output of the counter
reaches four this bit will be 1 and will feed a 0 back into the load input. This will
load the ‘1111’ input back into the counter, causing it to return to start 0 and begin
counting up again. This will cause the counter to only count from 0 to 3.

The four outputs of the multiplicand shift register will be fed into AND gates.

	
 8	

The second input to the AND gates will be the output of the 4:1 MUX. The outputs
of the four AND gates will be the next 4-bit number to be added to the partial sum.
They will be fed into the full adder.

All three shift registers and the counter will be controlled by the same clock.
The control lines of the 8-bit shift register will connected to the inverse of the third
bit of the counter. When the third bit of the counter is equal to ‘1’ it signifies the
end of the add-and-shift algorithm. When the counter has reached 4 all the bits of
the multiplier have already been considered.

On the programmable UP2 board, the input pins will be assigned to pins on

the board. The four bits of the multiplier and four bits of the multiplicand will be
assigned to eight switches. The ‘pulse’ input will be assigned to a separate switch
and the clock input will be assigned to a key. The output will be assigned to eight
consecutive LEDs.

Specifications

Must design and implement a 4-bit multiplier using the add-and-shift
algorithm. Both inputs must be fed from the same switches, toggled by two
different push buttons, and stored in two different registers. An additional switch
must be used to signal the start of multiplication. The design must include a
‘DONE’ signal to indicate the end of multiplication.

On the UP2 board, must use SRAM. Must use the on board clock to
synchronize the circuit. Must use LEDs to display the output.

Design Synthesis

None

	
 9	

Complete Logic Diagram

	

	
 10	

Results and Simulations

Simulation

a) 10*9
𝐴!𝐴!𝐴!𝐴! represent the
multiplicand 10 (1010) and
𝐵!𝐵!𝐵!𝐵! represent the multiplier 9
(1001). The pulse is high for the first
clock cycle. The final answer is 90
(01011010).

b) 13*5

𝐴!𝐴!𝐴!𝐴! represent the
multiplicand 13 (1101) and
𝐵!𝐵!𝐵!𝐵! represent the
multiplier 5 (0101). The pulse is
high for the first clock cycle. The
final answer is 65 (01000001).

	
 11	

Implementation

 10 (1010) * 3 (0011) = 30 (00011110)

	
 12	

Answers to the questions in the lab handout

None

Conclusion

 This lab provided a fairly comprehensive background to arithmetic circuits.
We learned how to design a multiplier circuit and by extension an adder and
subtracter circuit. We encountered difficulty when designing the counter and 4:1
MUX’s pin connections, but managed to work out the problems after more rigorous
testing. I learned about the importance of ALU’s in many applications and how to
use a programmable board to manually test circuits.

Works Cited

None

Signed OFF

(Included)

	

