
University of Miami, Electrical and Computer Engineering

Project 3: Sabotaging the Stack

Assigned: March 4th, 2014

Due: March 24th, 2014 11:59pm

EEN 312, Spring 2014

Professor Eric W. D. Rozier

Maximum Score: 80pts

1 Pre-Lab

Good evening EEN 312 students. Your mission, should you choose to accept it, is to develop a detailed
understanding of ARM calling conventions and stack organization. In a series of missions you will learn
to exploit stack organization on a series of executable files, gaining firsthand experience with one of
the methods commonly used to exploit security weaknesses in operating systems and network servers.
As always, should you, or any of your classmates su↵er a segmentation fault, or have your processes
killed, the University will disavow any knowledge of your enrollment in this class. This assignment will
self-destruct in five seconds. Good luck!

Important Note: The purpose of this lab is to help you learn about the runtime operation of programs
and to understand the nature of this form of security weakness, so you can avoid it when you write your
own code. We do not condone the use of this or any other form of attack to gain unauthorized access to
any system resources. There are criminal statutes governing such activities.

2 Post-Lab

Handin Information: You should handin printouts of your work, include the printf statements used
to make the exploit strings (where applicable) and a short write up on your solutions to each of the
problems.

1/7

Mission 0: Field Training

Before we send you on your first real mission, we’ve decided to give you some field training to help you
understand how to examine the stack. We will start by examining the following code using gdb.

Listing 1: Hello World

/* Hello World */

#include <stdio.h>

int main (int argc , char **argv) {

printf("Hello World");

char a;

}

Compile the above program using gcc as follows:

gcc -g -o helloworld helloworld.c

The -g option is used to load debugging symbols. Start up gdb with this program in the usual fashion
with gdb helloworld.
We can view the stack layout directly using the command x/Nx $sp where N is the number of con-
secutive double words you wish to examine. The command eXamine looks at a portion of memory, by
feeding it the argument $sp we ask it to begin looking at the memory address held in the stack pointer.

2/7

Mission 1: We Have Ways of Making You Printf

5 points

For your first mission, you will exploit a program that attempts to print out input passed to it on the
command line. You will need to download the first mission pack from the website, format-mission.tar.
The easiest way to do this is to run the command:

wget http://performalumni.org/erozier2/EEN312/format-mission.tar

You will then need to unpack the mission file to extract the necessary files, like this:

tar -x format-mission.tar

Lucky for you, our intelligence intercepted the source code for this mission, which you will find in
format.c. The executable you will be attacking is in the file format. If you run the program:

format EEN312isawesome

It will print “EEN312isawesome” and terminate. We will be exploiting the prototype for the printf

function, given below, to examine the stack.

printf(‘‘format strings’’, variable names);

Format strings are ASCIIZ strings used to specify and control the representation of di↵erent variables,
we can use the special values printf scans for and recognizes to print arguments from the stack and
display it on the screen. We will deceive printf and use it to read values o↵ the stack using the %08x

format string, which prints a variable as a sequence of 8 hexadecimal digits. Run the program in gdb

with the following argument:

(gdb) r %08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x

Now, after setting a breakpoint in gdb for main, examine the first 10 elements on the stack as before.
Print o↵ copies of the output of you both running the program and examining the stack. Explain the
similarities or di↵erences you see, and what they mean. What is the program using for the variables
which printf expects?

3/7

Mission 2: Infiltrating the Uncallable Function

10 points

For your second mission, you will exploit a program that gets user input from the keyboard using the
gets function from libc. Your mission is to overwrite the link register to call an uncallable function.
You will need to download the first mission pack from the website, lr-mission.tar. The easiest way to
do this is to run the command:

wget http://performalumni.org/erozier2/EEN312/lr-mission.tar

Lucky for you, our intelligence intercepted the source code for this mission, which you will find in
secretfunction.c. The executable you will be attacking is in the file secretfunction. The executable
will prompt you for a string, store it in a 10 character bu↵er, and then print the string.

What we want to do in this mission is overwrite the link register to change the results of a return call.
Disasemble the function main using gdb and fund the branch to getBuffer. Note the address of the
next instruction. Now, set a breakpoint for getBuffer, and continue to that breakpoint. The first thing
done by the program is to push r11 and the stack pointer to the stack, and then to make space for
the temporary bu↵er. Advance the program until 0x84ac. You should now examine the stack with a
command similar to x/10x $sp, and look for the return address you identified for the function. Our goal
is to overwrite this address.

Try the command until *0x84b4. You will be prompted for input, input the string AABBCCDDEE.
Examine the stack again, note how it changed. The ascii codes for AABBCCDDEE are stored on the
stack now, but note the order of the bytes. Note the A’s, C’s, and E’s are stored in the lower order bytes,
while the B’s and D’s are in the higher order bytes.

If we enter a string out of bounds of our bu↵er, it will begin over writing the stack. If we want to
overwrite the link register, we must arrange for our input to be in hexidecimal format. To do this, first
exit gdb, and use the command line tool “printf”.

Enter the following command:

pi> printf ‘‘AABBCCDDEEFFGGHH\x68\x84\x00\x00’’ > input

This saves the sequence in quotes to the file input and interprets \xYY as the hex digit YY.

Now run “gdb secretfunction” and before using the run command, set a breakpoint for getBuffer,
run the following command:

(gdb) set args < input

This tells gdb to use the file “input” as standard in, so it will read the file you created with the printf
tool as input. Run the program. Now examine the stack. Execute until *0x84b4. Examine the stack.
What happened? Type continue. What happens?
Try running the program without gdb, as such:

pi> secretfunction < input

What happens? Why?

Your next task will be to construct a bu↵er overflow which will cause the program to first print the text
in secretFunction2() and then call secretFunction() and exit. As a hint you will need to jump into
secretFunction2() after the stack changes are made, otherwise your planted address will not be put
into the pc when it pops. Think carefully.

4/7

Mission 3: Turning a Library Function into a Double Agent

10 points

For your third mission, you will exploit a program that gets user input from the keyboard using
the gets function from libc. You will need to download the first mission pack from the website,
library-mission.tar. The easiest way to do this is to run the command:

wget http://performalumni.org/erozier2/EEN312/library-mission.tar

Lucky for you, our intelligence intercepted the source code for this mission, which you will find in
bypassCode.c. The executable you will be attacking is in the file bypassCode. The executable will
prompt you for your name, which it will store in a 10 character bu↵er, and will later prompt you for an
integer which it will then use to seed a linear congruential generator to produce a value which it will
compare to a checksum. The computation of this value is a complex mathematical operation based on
large prime numbers. It will be di�cult to figure it out, even after examining the source! Do not try!

To bypass the code we will turn a function into a double agent. Namely we will utilize the function
inet6 rth add. We can use gdb in “command mode” to produce the assembly language for this function.
A series of commands is stored in the file “cmd.txt” in your mission pack. Take a look at it.

What you see here is a series of commands for gdb, the results of these commands can be stored in a file
by running the following command:

pi> gdb bypassCode < cmd.txt > function.txt

Check the file function.txt, you will find the output of gdb. Examining the file we find the following:

Listing 2: funtion.txt

0 xb6 f0 f64c <+60>: mov r0 , r4
0 xb6f0 f650 <+64>: pop { r4 , pc}

Create an input to the program, as in the previous mission, which uses a bu↵er overflow to jump to the
pop statement, pops a value from the stack into r4, and then jumps to the move to place that statement
into r0 to alter the return value of getBuffer. Becareful to overwrite the stack in such a way that you
do not disturb the necessary values stored there. It may be helpful to diagram the entire stack for the
call chain created.

5/7

Mission 4: Every Spy Needs Gadgets

20 points

For your fourth mission, you will exploit a program that gets user input from the keyboard using
the gets function from libc. You will need to download the first mission pack from the website,
gadget-mission.tar. The easiest way to do this is to run the command:

wget http://performalumni.org/erozier2/EEN312/gadget-mission.tar

Lucky for you, our intelligence intercepted the source code for this mission, which you will find in
gadgetFunction.c. The executable you will be attacking is in the file gadgetFunction. Notice the
function within the executable called gadgetFunction(). Your mission will be to call this function with
arbitrary arguments, and then return to main after it would have normally been called.

In the previous missions we learned how to change the link register, and to use functions in libc to modify
register values by using code from other functions. Many such functions exist in the standard libraries
linked to all executables. These bits of code are called gadgets. For this mission you will learn how to
search for, identify, and utilize gadgets.

Run the command:

pi> objdump -d /lib/arm-linux-gnueabihf/libc.so.6 > libc.txt

When it finishes, a full listing of libc’s assembly will be in “libc.txt”. We want to search this for gadgets.
A useful command will be grep type: man grep on the command line to read the manual page for grep.
The grep command can help you search files. We will use it to search “libc.txt” for gadgets. Some
helpful hints:

• Grep calls can be chained with the pipe | operator. So: grep mov libc.txt | grep ‘‘r0, r4’’

will search for lines which contain the string “mov” and then search the matching lines for the
string “r0, r4”.

• Running grep with the flag -A N will add the next N lines after any matching input to the output.

• Running grep with the flag -B N will add the previous N lines before any matching input to the
output.

Example:

grep -A 1 mov libc.txt | grep -A 1 ‘‘r0, r4’’ | grep -B 1 pop

First searches libc.txt for all instructions with “mov” in them, and then produces as output a set of those
instructions, and very next instruction afterwards. It then passes the output to grep which searches for
lines with registers r0 and r4 and produces as output a set of those instructions, and very next instruction
afterwards. It then passes the output to grep which searches for lines with the command “pop” in them,
and produces as output a set of those lines, and the previous line before it.

The final output is all mov instructions with parameters “r0, r4” followed by a pop instruction.

When finding gadgets it is important to get the code as it appears in our executable, which will be
slightly di↵erent. Examine libc.txt with the less command and search it for the line number indicated
in our grep search. Find the label name it appears under, and then set up a command file, similar
to that used in the previous mission, to disassemble the function and find the addresses of the desired
instructions.

6/7

Mission Impossible: Hacking into the Enemy Program

35 points

Your final mission is to take any of the previous missions, and use the original executable, and a bu↵er
overflow to get access to a “shell”. To do so you will want to use the standard library function system to
get access to a shell command. Type the command man system for more information on this function.
You will want to set it up with the argument “/bin/sh”.

7/7

EEN312& & 3/31/14&

Lab&3&–&Sabotaging&the&Stack&
Nathan&Paternoster&

&

Mission&1&

&
Purpose(–(To&understand&buffer&overflows.&
&

&
&

Description(
(
& When&the&program&is&run&normally&it&outputs&the&string&that&the&

user&enters.&However&when&we&input&

“%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x”&the&

output&instead&changed&to&strange&values.&These&values&were&actually&

taken&off&the&stack.&The&first&three&values&were&memory&addresses&and&

the&next&9&were&taken&directly&from&the&stack.&We&discover&that&using&

%08x&we&can&access&bytes&from&the&stack&and&use&them&as&inputs.&&About&

midPway&down&the&screenshot&(the&longest&line)&we&can&see&the&new&

output&matches&almost&exactly&the&values&on&the&stack&(after&the&line&

x/10x&$sp)&

EEN312& & 3/31/14&

Mission&2&

&
Purpose(–(To&implement&buffer&overflow&by&calling&two&“uncallable”&
functions&–&secretFunction&and&secretFunction2.&

&

Solution(input&=&
“AABBCCDDEEFFGGHH\x88\x84\x00\x00IIJJ\x68\x84\x00\x00”&
&

secretFunction2&output&followed&by&secretFunction&output&

&
&

EEN312& & 3/31/14&

&

&

&

Description(
&

In&getBuffer&our&string&input&is&put&in&in&the&“gets”&function.&The&

stack&looks&like&what&it&is&displayed&as&at&Breakpoint&1.&When&getBuffer&

finishes&it&reads&in&our&value&“0x00008488”&into&the&pc&and&branches&

there.&That&address&is&the&second&line&of&secretFunction2.&&In&

secretFunction2&the&stack&now&looks&like&what&it&is&displayed&as&at&

Breakpoint&2.&When&secretFunction2&finishes&our&dummy&value&(the&

first&byte&on&the&stack)&is&placed&into&r11&and&then&“0x00008468”&is&

placed&into&the&pc.&The&program&then&branches&to&that&address&which&is&

the&first&line&of&the&secretFunction.&The&program&runs&through&

secretFunction&and&then&exits&normally.&
&

&

&

&

&

&

&

&

&

EEN312& & 3/31/14&

Mission&3&

&
Purpose(–(To&use&buffer&overflows&to&bypass&a&part&of&code&and&
manipulate&return®isters&to&pass&a&password&check.&

&

Solution(input&=&
“AABBCCDDEEFF\x60\xf6\xff\xbe\x50\x06\xf1\xb6\x01\x00\x00\x0

0\x4c\x06\xf1\xb6IIJJ\x20\x94\x00\x00\n10”&
&

&
&

Description(
&

In&“getBuffer”&we&overwrote&the&user&input&in&the&gets&function.&

The&first&thing&we&overwrote&was&the&address&of&r11:&\x60\xf6\xff\xbe.&

This&is&what&was&originally&in&r11.&We&kept&it&the&same&to¬&interfere&

with&the&program.&Then&we&wrote&the&address&of&the&pop&instruction&in&

the&inet6_rth_add&function&(\x50\x06\xf1\xb6)&to&jump&to&when&the&

“gets”&function&finishes.&Next&we&pushed&the&value&of&“1”&which&is&the&

value&that&“checkPassword”&must&receive&to&authenticate&the&user.&Then&

we&pushed&the&address&of&the&mov&instruction&right&before&the&pop&

instruction&(\x4c\x06\xf1\xb6).&This&way&the&program&will&jump&back&1&

line&and&write&the&value&of&1&into&r0.&Then&we&wrote&“IIJJ”&nonsense&

values&to&place&into&r4&and&finally&the&address&right&after&the&“getBuffer”&

function&finishes&so&that&it&will&skip&everything&else&in&getBuffer.&The&

EEN312& & 3/31/14&

/n10&will&be&to&input&“10”&into&the&check&password&function&to&prevent&it&

from&going&into&an&infinite&loop.&

&

We&got&the&“Authenticated!”&message&but&still&ended&with&a&

segmentation&fault.&
&

&

Mission&4&
&

Purpose&–(To&identify&“gadgets,”&or&sets&of&instructions&in&library&
functions&that&can&be&used&to&insert&our&own&code&P&namely&a&‘pop’&and&

‘mov’&statement&pair.&&

&

Solution(–(Using&the&“grep”&command&we&located&all&of&the&instances&of&
mov&instructions&that&took&“r0,&r4”&followed&by&a&pop&instruction.&We&

chose&one&of&these&instances&and&located&that&address&in&memory&to&be&

used&as&our&“gadget”:&

!
grep!&A!1!mov!libc.txt!|!grep!&A!1!"r0,!r4"!|!grep!&B!1!pop!

&

Description(
!
! These!are!some!of!the!results!from!our!search.!We!chose!to!
implement!the!gadget!at!address!“2b9dc”!and!“2b9e0.”!Then!we!used!the!
“less”!command!to!examine!libc.txt!and!find!which!function!these!two!lines!
belonged!to.!We!located!the!address!in!the!libc.txt!and!determined!that!it!

EEN312& & 3/31/14&

belonged!to!the!“catclose”!function.!The!next!thing!to!do!is!to!go!back!to!
gdb!and!examine!the!function!contents!to!determine!the!actual!address!of!
our!gadget!to!jump!to.!
! In!gdb,!we!wrote!a!command!file!to!run!the!gdb!debugger!and!
examine!the!“catclose”!function!to!determine!the!actual!address!of!our!
gadget.!
&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

EEN312& & 3/31/14&

&

The!address!of!our!gadget!is!0xb6ec09e0.!
!
!
!
!
!
!
!
!
!
!

&

EEN312& & 3/31/14&

Mission&Impossible&

&
Purpose(–(To&use&buffer&overflows&to&access&a&shell&utilizing&the&
“system”&function&with&the&argument&“/bin/sh”.&

&

Solution&–&
“AABBCCDDEEFFGGHH\xe0\x09\xec\xb6\x48\xf6\xff\xbe\xdc\x09\xec\x
b6IIJJ\xd8\xfb\xec\xb6\bin\sh\x00\x00”
&
&

&
&

&

&

Description((
(

We&utilized&the&gadgetFunction&mission&to&buffer&overflow&and&

jump&into&the&system&function&(as&shown&in&the&screenshot).&To&pass&

“/bin/sh”&as&an&argument&we&first&pushed&it&onto&the&stack&(using&a&

buffer&overflow)&then&jumped&to&our&previous&gadget&and&placed&the&

memory&address&of&that&place&on&the&stack&into&r0.&We&then&jumped&into&

the&system&function&and&passed&r0.&
&

EEN312& & 3/31/14&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

The&system&function&is&successfully&called&with&the&argument&

“/bin/sh”.&
&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

